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Black holes

• As should any theory describing the universe, string theory low
energy limits contain black hole states.

• The aim of this talk is to study topological invariants which
appear in string theory as an index counting black hole
microstates.

• What is their physical signi�cance ?

• Compute the entropy of black holes.
• It can give insight into quantum corrections to the

Bekenstein-Hawking entropy formula.
• They also appear as weights for instanton contributions to the

low energy e�ective action.

• These topological invariants can be assembled into functions
that posess remarkable modular properties.
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Modularity

• The modular group is SL(2,Z).

• Modularity speci�es how a function (modular form) transforms
when the modular group SL(2,Z) acts on its (complex)
argument.

• Modular forms obey very rigid constraints.

• We can use these constraints to �nd the (generating function)
of the topological invariants exactly!
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Outline

• We will introduce some notions about modular forms.

• We will look at the modular properties of the generating
functions associated to these generating functions of CY
invariants.

Result

We use these modular properties to �x, up to ambiguities, these
generating functions.
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Modular forms

• The modular group SL(2,Z) acts on the upper half plane
H = {τ ∈ C| Im τ > 0} through

τ → aτ + b

cτ + d
, where

(
a b
c d

)
∈ SL (2,Z) .

• A modular form f (τ) : H → C of weight k is holomorphic and
transforms as

f

(
aτ + b

cτ + d

)
= (cτ + d)k f (τ).

• We see modularity implies f (τ + 1) = f (τ), which implies that
f has a Fourier expansion

f (τ) =
∑
n≥0

cnq
n, q = e2πiτ .
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• In physics the parameter τ is often the complexi�ed coupling
constant τ = θ

2π + 4πi
g2

.

• For a given k , modular forms of weight k form a �nite
dimensional vector space.

• Modularity gives good control on the growth of the Fourier
coe�cients cn.

• We will present three generalizations to modular forms that
appear, together, in our work.
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Jacobi-like forms

• A Jacobi-like form is a function f (τ, z) : H× C −→ C that is

• Holomorphic in both variables.
• The modular transformation rule gets modi�ed

f
(

aτ+b
cτ+d ,

z
cτ+d

)
= (cτ + d)k e

2πimcz2

cτ+d f (τ, z) with k the weight

and m the index.

• In the limit z → 0 we recover a modular form.

• Remark: compared to the more known Jacobi forms, this
de�nition misses the elliptic transformation of z .
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Mock modularity

• A mock modular form f of weight k is a holomorphic function
whose modular transformation has an anomaly. This anomaly
is determined by a holomorphic modular form g called
"shadow".

• The function f̂ = f +
(

i
2π

)k−1 ∫∞
−τ̄ (z + τ)−k g(−z̄) dz is a

non-holomorphic modular form that we call completion of f .

• f is a depth 1 mock modular form.

• We de�ne by induction a depth n mock modular form as a
holomorphic function whose anomaly is determined by a depth
n − 1 mock modular form.

• Mock modular functions with a given weight k and a given
shadow g form a �nite dimensional space.

Khalil Bendriss Laboratoire Charles Coulomb
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Vector-valued Modular forms

• We replace f (τ) by a vector-valued object fµ(τ).

• We allow in the transformation rule, linear combinations:

fµ

(
aτ + b

cτ + d

)
= (cτ + d)k

∑
ν

Mµν(ρ)fν(τ),

where ρ =

(
a b
c d

)
and Mµν(ρ) is a representation of the

modular group. We call Mµν the multiplier system.

• The space of such forms, for given k and M, is �nite
dimensional.

• Our generating functions are vector-valued.

Khalil Bendriss Laboratoire Charles Coulomb
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Modularity cheat sheet

Term Math. object Characterestics

Modular form f (τ) weight k

VV Modular form fµ(τ) multiplier system Mµν

Jacobi-like form fµ(τ, z), fµ(τ, z1, z2) index m; indices m1,m2

Mock modular form f (τ) ↔ f̂ (τ, τ̄) shadow g(τ)
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Refresher

• We want to study topological invariants which appear in string
theory as an index counting black hole microstates.

• The generating function of these invariants is of the form

fµ (τ) =
∑
n≥n0

cn,µq
n,

where the role of cn,µ is played by the invariants.

• We will �x fµ up to computing a �nite number of cn,µ.
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Donaldson-Thomas invariants

• We take type IIA string theory compacti�ed on Y.

• We restrict to CY spaces with b2 = 1.

• DT invariants are topological invariants of Y. They count
D6-D4-D2-D0 brane bound states with charge
γ = (p0, p, q, q0) in type IIA string theory on Y.

• We denote them Ω(γ) and they take integer values.

• Physically:

• They count the number of microstates of black holes with
charge γ of type IIA string theory compacti�ed on Y.

• They appear as weights of instanton contributions to the low
energy e�ective theory coming from type IIB string theory on
Y [S. Alexandrov, KB '23].

Khalil Bendriss Laboratoire Charles Coulomb
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De�ning the generating functions

• We focus on rank 0 DT invariants, which means
γ = (0, p, q, q0). This corresponds to 0 D6-brane charge.

• We de�ne rational DT invariants Ω̄(γ) =
∑

m|γ
1

m2Ω(γ/m).

• Due to spectral �ow symmetry, Ω̄ only depends on p and
(µ, q̂0), where q̂0 takes an in�nite number of values and µ only
has a �nite number of values.

• Due to the Bogomolov bound, Ω̄p,µ(q̂0) are known to vanish
for q̂0 ≥ q̂max

0
.

• This allows us to de�ne a (vector-valued) generating function
for each magnetic charge p

hp,µ(τ) =
∑

q̂0≤q̂max
0

Ω̄p,µ(q̂0) q
−q̂0 ,

where q = e2πiτ .
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Properties of hp,µ

• For p = 1 the generating function is a modular form.

• It was shown in [S.Alexandrov, B.Pioline '18] that more
generally, hp,µ is a depth (p − 1) mock modular form.

• We have a holomorphic anomaly equation expressing the
completion of hp,µ in terms of the generating functions of
lower magnetic charges pi such that

∑
pi = p.

ĥp,µ(τ, τ̄) =

p∑
n=1

∑
∑n

i=1 pi=p

∑
{µi}

R
{pi}
µ,{µi}(τ2)

n∏
i=1

hpi ,µi (τ),

where τ2 = Im τ .
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ĥp,µ(τ, τ̄) =

p∑
n=1

∑
∑n

i=1 pi=p

∑
{µi}

R
{pi}
µ,{µi}(τ2)

n∏
i=1

hpi ,µi (τ),

where τ2 = Im τ .

Khalil Bendriss Laboratoire Charles Coulomb

Mock modularity of CY threefolds 18 / 38



Introduction Modularity Setup The modular ambiguity Constructing the solution Conclusions

Properties of hp,µ

• For p = 1 the generating function is a modular form.
• It was shown in [S.Alexandrov, B.Pioline '18] that more
generally, hp,µ is a depth (p − 1) mock modular form.

• We have a holomorphic anomaly equation expressing the
completion of hp,µ in terms of the generating functions of
lower magnetic charges pi such that

∑
pi = p.
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The completion equation of hp,µ

• Example for p = 2

ĥ2,µ(τ, τ̄) = h2,µ(τ) +
∑
µ1,µ2

R(1,1)
µ,µ1,µ2h1,µ1 h1,µ2 .

• This equation doesn't characterise h2,µ completely! Given one
solution, we can add any modular holomorphic function to it
and get another solution.

• We can �x the ambiguity by computing a few DT invariants.

• This suggests a two-step approach to �nding hp,µ.
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The two steps

• We decompose hp,µ = h
(an)
p,µ + h

(0)
p,µ where h

(an)
p,µ is a particular

solution to the equation and h
(0)
p,µ is the holomorphic modular

ambiguity [S.Alexandrov, N.Gaddam, J.Manschot, B.Pioline
'22].

• Finding the functions hp can be done as follows:

• Find a particular solution h
(an)
p .

• Compute a �nite number of DT invariants and �x h
(0)
p .

• Problem: How to perform the �rst step for all p without also
performing the second step for all pi < p? Because the
completion equation of hp depends on all the holomorphic
modular ambiguities of lower charges.
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Strategy

• We provide an ansatz to extract the dependance of the
generating functions on lower rank ambiguities

hp,µ(τ) =

p∑
n=1

∑
∑n

i=1 pi=p

∑
{µi}

g
{pi}
µ,{µi}(τ)

n∏
i=1

h
(0)
pi ,µi .

• We call g
{pi}
µ,{µi}(τ) the anomalous coe�cients.

• For a single charge g
(p)
µ,ν (τ) = δµν .

Goal

Find the anomalous coe�cients.
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Anomalous coe�cients

• These functions are mock modular of depth n − 1 and their
completion is given by:

ĝ{pi} = Sym

{ ∑
∑

i ni=n

R{si}(τ2)
k∏

i=1

g (pji+1,...,pji+1 )(τ)

}
,

which is illustrated by a sum over the trees:

• The main blocks, R{ri}(τ2), are non-holomorphic theta series.
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ĝ{pi} = Sym

{ ∑
∑

i ni=n

R{si}(τ2)
k∏

i=1

g (pji+1,...,pji+1 )(τ)

}
,

which is illustrated by a sum over the trees:

• The main blocks, R{ri}(τ2), are non-holomorphic theta series.

Khalil Bendriss Laboratoire Charles Coulomb

Mock modularity of CY threefolds 23 / 38



Introduction Modularity Setup The modular ambiguity Constructing the solution Conclusions

Theta series

• A simple theta series can be written as

ϑµ =
∑

k∈Λ+µ

q−
1
2
Q(k)2 ,

where Λ is a d-dimensional lattice with negative de�nite
quadratic form Q(x) that veri�es Q(x) ∈ 2Z. It gives a
vector-valued modular form with the dimension of the
representation being equal to | detQ|.

• If Q(x) is inde�nite, we can still de�ne a theta series by
inserting a kernel Φ(

√
2τ2 k) that has support inside the

negative cone of the quadratic form.
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Theta series

• A theta series with a kernel can be written as

ϑµ =
∑

k∈Λ+µ

Φ(
√
2τ2 k) q

− 1
2
Q(k)2 ,

• A theta series is modular if its kernel veri�es a certain
di�erential equation called Vignéras equation.

• There are 2 possibilities, either we take a (product of)
di�erence of sign functions which preserves holomorphicity but
spoils modularity, or we take the kernel as (product of)
di�erence of generalized error functions which ensures
modularity but spoils holomorphicity.
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Solving the completion equation

• Let's look at the equation at n = 2

ĝ (p1,p2)
µ,µ1,µ2(τ, τ̄) = g (p1,p2)

µ,µ1,µ2(τ) + R(p1,p2)
µ,µ1,µ2(τ2)
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• The functions R
{pi}
µ,{µi}(τ2) are theta series whose kernel doesn't

satisfy the Vignéras equation.

• This suggests we should choose g
(p1,p2)
µ,µ1,µ2(τ) as a theta series

such that the sum of its kernel with that of R
{pi}
µ,{µi}(τ2) is a

solution of the Vignéras equation.

• The kernel that accomplishes this, while ensuring
holomorphicity, is constructed using sign functions:
(sgn(v · k)− sgn(w · k)) where w ∈ Λ and is null (i.e

Q(w) = 0) and v is �xed by R
{pi}
µ,{µi}(τ2).
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ĝ (p1,p2)
µ,µ1,µ2(τ, τ̄) = g (p1,p2)

µ,µ1,µ2(τ) + R(p1,p2)
µ,µ1,µ2(τ2)

• The functions R
{pi}
µ,{µi}(τ2) are theta series whose kernel doesn't

satisfy the Vignéras equation.

• This suggests we should choose g
(p1,p2)
µ,µ1,µ2(τ) as a theta series

such that the sum of its kernel with that of R
{pi}
µ,{µi}(τ2) is a

solution of the Vignéras equation.

• The kernel that accomplishes this, while ensuring
holomorphicity, is constructed using sign functions:
(sgn(v · k)− sgn(w · k)) where w ∈ Λ and is null (i.e

Q(w) = 0) and v is �xed by R
{pi}
µ,{µi}(τ2).

Khalil Bendriss Laboratoire Charles Coulomb

Mock modularity of CY threefolds 27 / 38



Introduction Modularity Setup The modular ambiguity Constructing the solution Conclusions

Solving the completion equation

• Our lattice is of de�nite signature and doesn't contain null
vectors =⇒ we need to extend the lattice.

• There is another step that we need to do before writing the
solution: adding a re�nement parameter [S. Alexandrov, J.
Manschot, B. Pioline '20].
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The re�nement

• First, we introduce a re�nement parameter z = α− τβ
parametrized by two real variables.

• Why the re�nement ?

• The re�ned function R
{pi}ref
µ,{µi} (τ2, z) becomes much simpler.

• The real parameter β will serve as a crucial regularization
parameter in our solution later.

• Physically the quantity y = e2πiz can be thought of as a
fugacity parameter conjugate to the angular momentum J3 in
uncompacti�ed dimensions.

• The re�ned anomalous coe�cients g
(p1,p2)ref
µ,µ1,µ2 (τ, z) are mock

Jacobi-like forms and their completion is given by a re�ned
version of the completion equation.

• We recover the original functions when z → 0.
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Lattice extension

• For each charge pi we introduce di new direction and a new
re�nement parameter zi .

• We get a similar completion equation on new function

g̃
{pi}ref
µ,{µi} (τ, z , {zi}) only with a bigger lattice Λ̃ that contains

null vectors.

• A solution to this new equation descends to a solution of the
re�ned equation through

g
{pi}ref
µ,{µi} (τ, z) =

[
n∏

i=1

D(κpi )
zi g̃

{pi}ref
µ,{µi} (τ, z , {zi})

] ∣∣∣∣∣
{zi→0}

,

where D(κpi )
zi are modular derivatives acting on the extra

re�nements parameters zi introduced with the extension.
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The solution for n = 2

• For the n = 2 case we examined earlier, a solution reads:

g̃ (p1,p2)ref
µ,µ1,µ2 = ϑ(p1,p2)

µ,µ1,µ2 + ϕ(p1,p2)
µ,µ1,µ2 ,

where ϑ is an ide�nite theta series with kernel
(sgn(v · k)− sgn(w · k + β)) with w ∈ Λ̃.

• The presence of β in the sign regularizes the sum over the
direction satisfying w · k = 0 and produces a pole in z .

• The second function ϕ is a holomorphic modular ambiguity
that cancels the pole in z and ensures a regular limit z → 0.
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The solution for any n

• We provide a solution to the re�ned extended completion
equation in the form

g̃
{pi}ref
µ,{µi} = Sym

{ ∑
∑

ni
=n

ϑ
{si}
µ,{νi}

m∏
k=1

ϕ
{Rk}
νk ,{µj}jk<j≤jk+1

}
,

which mimics the form of the completion equation veri�ed by

g̃
{pi}ref
µ,{µi} .

• There are two parts to this solution, the inde�nite theta series

ϑ
{pi}
µ,{µi} and the Jacobi-like forms ϕ

{pi}
µ,{µi}
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The inde�nite theta series

• Each ϑ
{pi}
µ,{µi} is an inde�nite theta series with the kernel∏n

i=1
(sgn(vi · k)− sgn(wi · k + β)))

• The vectors vi are �xed by R{pi}ref and the vectors wi are null
vectors from the extended lattice.

• The presence of β in the sign functions regularizes the sum
over directions wi · k = 0. These regularized directions
produce poles in z = 0.
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The modular forms

• The functions ϕ
{pi}
µ,{µi} are Jacobi-like forms with �xed modular

properties.

• They also ensure that the solution g̃ ref{pi} has a regular
unre�ned limit z → 0.

• They can be chosen

ϕ
{pi}
µ,{µi} (τ, z) ∝ δ

(κp0)
µ−

∑
i µi

e−
m
3
π2E2(τ)z2

zn−1
,

where m is the index of the full function and E2(τ) is the
(second) Eisenstein series.
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Results

• This recipe allows to �nd an explicit expression for the

anomalous coe�cients g
{pi}
µ,{µi}(τ) for any number of charges

p1, . . . , pn.

• The anomalous coe�cients were found explicitly, in full
generality for 2 and 3 charges.

• We tested our solutions against known solutions for charges
(1, 1, 1) and a few examples with two charges (r1, r2).

• In principle we can go to higher number of charges and thus

�nd a particular solution h
(an)
p up to �xing all modular

ambiguities h
(0)
pi for pi < p.
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• We parametrized the dependence of hp,µ on h
(0)
pi ,µ with pi ≤ p

through g
{pi}
µ,{µi}.

• This opens up various development directions:

• Compute polar terms to �x the h
(0)
p,µ. (Done for p = 2 for two

CY [S.Alexandrov, S.Feyzbakhsh, A.Klemm '23])
• Generalize the construction for b2 > 1.
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A. Comparing solutions

• If we have two solutions g
(p1,p2)
µ,µ1,µ2 and g

(p1,p2)
µ,µ1,µ2 then the

combination

φ(p1,p2)(τ, z) =
∑
µ,µi

(
g (p1,p2)ref
µ,µ1,µ2 − g(p1,p2)refµ,µ1,µ2

)
ϑ(p1,p2)
µ,µ1,µ2 ,

is a Jacobi form with known weight and index.

• One can decompose it in a basis of the space of Jacobi forms
of that given weight and index.
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A. Explicit solution

The solution we �nd for charges (1, 1) reads:

g
(1,1)
0

=
7

497664 q
− 7573

82944
− 11993 q

3456
− 6147187 q2

15552

− 417892013 q3

20736
− 2669990303 q4

4608
+ O

(
q5
)

g
(1,1)
1

=
247

62208 q1/4
+

2441 q3/4

2592
− 685847 q7/4

6912

− 60354863 q11/4

7776
− 1794183169 q15/4

6912
+ O

(
q19/4

)
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B. Eisenstein series

The expression of E2(τ) is

E2(τ) = 1− 24
∞∑
n=1

σ1(n) q
n,

where σ1(n) =
∑

d |n d . It transforms as

E2

(
aτ + b

cτ + d

)
= (cτ + d)2

(
E2(τ) +

6

iπ

c

cτ + d

)
.
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