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Black holes

® As should any theory describing the universe, string theory low
energy limits contain black hole states.

® The aim of this talk is to study topological invariants which
appear in string theory as an index counting black hole
microstates.
® What is their physical significance ?
® Compute the entropy of black holes.
® |t can give insight into quantum corrections to the
Bekenstein-Hawking entropy formula.
® They also appear as weights for instanton contributions to the
low energy effective action.
® These topological invariants can be assembled into functions
that posess remarkable modular properties.
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Modularity

® The modular group is SL(2,7Z).

® Modularity specifies how a function (modular form) transforms
when the modular group SL(2,7Z) acts on its (complex)
argument.

® Modular forms obey very rigid constraints.

® We can use these constraints to find the (generating function)
of the topological invariants exactly!
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Outline

e \We will introduce some notions about modular forms.

® We will look at the modular properties of the generating
functions associated to these generating functions of CY
invariants.

We use these modular properties to fix, up to ambiguities, these
generating functions.
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Modular forms

® The modular group SL(2,7Z) acts on the upper half plane
H = {7 € C|Im7 > 0} through

ar+ b

ﬁi
T ctr+d’

a b
where (c d> €SL(2,Z).

¢ A modular form f(7) : H — C of weight k is holomorphic and

transforms as
ar + b k
f = (7).
<c7'+d> (et +d) f(7)

® \We see modularity implies (7 + 1) = f(7), which implies that
f has a Fourier expansion

f(r) = Z cnq”, q= 2™

n>0
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® |n physics the garan)‘efcer 7 is often the complexified coupling
Tl
=+

® For a given k, modular forms of weight k form a finite
dimensional vector space.

constant 7 =

e Modularity gives good control on the growth of the Fourier
coefficients c,.

® We will present three generalizations to modular forms that
appear, together, in our work.
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® Holomorphic in both variables.
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Jacobi-like forms

® A Jacobi-like form is a function f(7,z) : H x C — C that is

® Holomorphic in both variables.
® The modular transformation rule gets modified

2mimez?

f (a'r+b z ) = (cT+ d)k e er+d f(7,z) with k the weight

ct+d? ct+d
and m the index.

® |n the limit z — 0 we recover a modular form.

® Remark: compared to the more known Jacobi forms, this
definition misses the elliptic transformation of z.
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whose modular transformation has an anomaly. This anomaly

is determined by a holomorphic modular form g called

"'shadow".

e The function f = f + (ﬁ)k_l [(z+7)kg(—2)dzis a
non-holomorphic modular form that we call completion of f.

® fis a depth 1 mock modular form.

e \We define by induction a depth n mock modular form as a
holomorphic function whose anomaly is determined by a depth
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Mock modularity

A mock modular form f of weight k is a holomorphic function

whose modular transformation has an anomaly. This anomaly

is determined by a holomorphic modular form g called

"'shadow".

e The function f = f + (ﬁ)k_l [(z+7)kg(—2)dzis a
non-holomorphic modular form that we call completion of f.

® fis a depth 1 mock modular form.

e \We define by induction a depth n mock modular form as a
holomorphic function whose anomaly is determined by a depth
n — 1 mock modular form.

® Mock modular functions with a given weight k and a given
shadow g form a finite dimensional space.
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Vector-valued Modular forms

® We replace f(7) by a vector-valued object f,(7).

® \We allow in the transformation rule, linear combinations:

i (Z50) = (e ay > Mulp)il)

ct+d

where p = and M, (p) is a representation of the

b
d
modular group. We call M,,, the multiplier system.

® The space of such forms, for given k and M, is finite
dimensional.

e Qur generating functions are vector-valued.
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Modularity cheat sheet

Term

Math. object

Characterestics

Modular form

f(7)

weight k

VV Modular form

fu(T)

multiplier system M,

Jacobi-like form

(71, 2), £u(7, 21, 22)

index m; indices my, my

Mock modular form

f(r) < f(7,7)

shadow g(7)
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Refresher

e \We want to study topological invariants which appear in string
theory as an index counting black hole microstates.

® The generating function of these invariants is of the form

fu (7-) = Z Cn,,uqn7

n>ng

where the role of ¢, is played by the invariants.

® We will fix f, up to computing a finite number of ¢, ..
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® \We take type IlA string theory compactified on 2).

® We restrict to CY spaces with by = 1.

e DT invariants are topological invariants of ). They count
D6-D4-D2-D0 brane bound states with charge
v = (p° p, g, qo) in type IIA string theory on 2).
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Donaldson-Thomas invariants

We take type IIA string theory compactified on 2).

® We restrict to CY spaces with by = 1.

DT invariants are topological invariants of ). They count
D6-D4-D2-D0 brane bound states with charge

v = (p° p, g, qo) in type IIA string theory on 2).

We denote them Q() and they take integer values.
Physically:

® They count the number of microstates of black holes with
charge v of type IIA string theory compactified on ).

® They appear as weights of instanton contributions to the low
energy effective theory coming from type |IB string theory on
2 [S. Alexandrov, KB "23].
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Defining the generating functions

e \We focus on rank 0 DT invariants, which means
~v=(0,p, q,qo). This corresponds to 0 D6-brane charge.

® We define rational DT invariants Q(7) = 3 L Q(y/m).

mly ‘m?
e Due to spectral flow symmetry, Q only depends on p and
(14, Go), where Go takes an infinite number of values and p only
has a finite number of values.

® Due to the Bogomolov bound, Q, ,(do) are known to vanish
for Go > g5~
® This allows us to define a (vector-valued) generating function

for each magnetic charge p
hp (7)) = Z Qp,u(ao) q ®,
Go<ap=
where q = ™7,
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e |t was shown in [S.Alexandrov, B.Pioline '18] that more
generally, hp, ,, is a depth (p — 1) mock modular form.

e \We have a holomorphic anomaly equation expressing the
completion of h, , in terms of the generating functions of
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Properties of h, ,

® For p =1 the generating function is a modular form.

e |t was shown in [S.Alexandrov, B.Pioline '18] that more
generally, hp, ,, is a depth (p — 1) mock modular form.

e \We have a holomorphic anomaly equation expressing the
completion of h, , in terms of the generating functions of
lower magnetic charges p; such that > p; = p.

Z Z ,t{ﬁ{lu 7‘2) l_{ hPiyﬂi(T)?

n=1%" . pi=p {pi}

where 7 = Im 7.
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The completion equation of hj,,

e Example for p =2

h2,u(7'a T)= h2au(7_) + Z R;(tl,;’tll),ﬂz bt b
1,2
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The completion equation of hj,,

e Example for p =2

h2,u(7'a T)= h2au(7_) + Z R;(tl,;’tll),ﬂz bt b

H1, 2
p=2e R®=1 p=2a ROLD
2=2 1+1=2
|
@ [ °
h, hy hy
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The completion equation of hj,,

e Example for p =2

h2,u(7'a T)= h2au(7_) + Z R;(tl,;’tll),ﬂz bt b

H1, 2
p=2e R®=1 p=2e ROLD
= 1+1=
X J ° °
;"Z ill ill

® This equation doesn’t characterise hy ;, completely! Given one
solution, we can add any modular holomorphic function to it
and get another solution.
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H1, 2
p=2e R®=1 p=2e ROLD
= 1+1=
X J ° °
;"Z ill ill

® This equation doesn’t characterise hy ;, completely! Given one
solution, we can add any modular holomorphic function to it
and get another solution.

® We can fix the ambiguity by computing a few DT invariants.
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The modular ambiguity
0O@00000000

The completion equation of hj,,

e Example for p =2

h2,u(7'a T)= h2au(7_) + Z R;(tl,;’tll),ﬂz bt b

H1, 2
p=2e R®=1 p=2e ROLD
= 1+1=
X J ° °
;"Z ill ill

® This equation doesn’t characterise hy ;, completely! Given one
solution, we can add any modular holomorphic function to it
and get another solution.

® We can fix the ambiguity by computing a few DT invariants.

® This suggests a two-step approach to finding hp ,,.
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The two steps

® We decompose hp,, = h(a") h(o) where h( " s a particular

solution to the equation and h,(w)‘ is the holomorphic modular
ambiguity [S.Alexandrov, N.Gaddam, J.Manschot, B.Pioline
'22].
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The modular ambiguity
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The two steps

® We decompose hp,, = h(a") h(o) where h( " s a particular
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solution to the equation and h,(w)‘ is the holomorphic modular
ambiguity [S.Alexandrov, N.Gaddam, J.Manschot, B.Pioline
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* Find a particular solution h%".
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The two steps

® We decompose hp,, = h(a") + h( ) where h( " is a particular

solution to the equation and h,(w)‘ is the holomorphic modular
ambiguity [S.Alexandrov, N.Gaddam, J.Manschot, B.Pioline
'22].
® Finding the functions h, can be done as follows:
* Find a particular solution h%".
® Compute a finite number of DT invariants and fix h,(,o).
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The two steps

® We decompose hp,, = hf,?ﬂ) + hﬁ,% where h,(,‘?ﬂ) is a particular
solution to the equation and h,(g?l)‘ is the holomorphic modular
ambiguity [S.Alexandrov, N.Gaddam, J.Manschot, B.Pioline
'22].

® Finding the functions h, can be done as follows:

* Find a particular solution h%".
® Compute a finite number of DT invariants and fix h,(,o)

® Problem: How to perform the first step for all p without also
performing the second step for all p; < p? Because the
completion equation of h, depends on all the holomorphic
modular ambiguities of lower charges.
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The modular ambiguity
000@000000

Strategy

e \We provide an ansatz to extract the dependance of the
generating functions on lower rank ambiguities

S Y 6% A

n= 12: 1 Pi= p{ui} i=1
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The modular ambiguity
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Strategy
e \We provide an ansatz to extract the dependance of the
generating functions on lower rank ambiguities

e T,

Z Z {u, '_1 hPiv#i'

n=13%"", pi=p {1}

L L
D

P1 2 IZ
0) 0) (0)
h’I’l h’Pz h

Laboratoire Charles Coulomb
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The modular ambiguity
000@000000

Strategy

e \We provide an ansatz to extract the dependance of the
generating functions on lower rank ambiguities

Z Z {lj[lu, n hg??#: .

n=1 E: 1 Pi=pP {ui} i=1
Pe \g(m.---,pn )
. 4 e
F1 P2 Fn
0) 0) (0)
h'pl h'pz hpn

* We call g{p{’i }(7') the anomalous coefficients.
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e \We provide an ansatz to extract the dependance of the
generating functions on lower rank ambiguities

Z Z {lj[lu, n hg??#: .

n=1 E: 1 Pi=pP {ui} i=1
Pe \g(m.---,pn )
. 4 e
F1 P2 Fn
0) 0) (0)
h'pl h'pz hpn

* We call g{p{’} }(7') the anomalous coefficients.

e For a single charge g,Ef’V)(T) = O
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The modular ambiguity
000@000000

Strategy

e \We provide an ansatz to extract the dependance of the
generating functions on lower rank ambiguities

n
ey o)
()t
8y (T) L1 i
n=1%", pi=p {ui} ’:1
De._gP1--Pn)

/

) N Zpi=p

'3
Yo b Vo)
h’I’l h’Pz hpn

* We call g{p{’} }(7) the anomalous coefficients.

e For a single charge g,Sf’V)(T) = O

Find the anomalous coefficients.
Khalil Bendriss
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The modular ambiguity
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Anomalous coefficients

® These functions are mock modular of depth n — 1 and their
completion is given by:

k
g{Pi} — Sym{ Z R{Si}(7—2) Hg(pj"“’“"pjf“)(T)},
2 ni=n i=1

which is illustrated by a sum over the trees:
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Anomalous coefficients

® These functions are mock modular of depth n — 1 and their
completion is given by:

k
g{Pi} — Sym{ Z R{Si}(7—2) Hg(pj"“’“"pjf“)(T)},
2 ni=n i=1

which is illustrated by a sum over the trees:

R(SL; r-‘:m)

=p, + =
51 P1 T P2

g(l’hpz) 7 X ) g(}’n)
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The modular ambiguity
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Anomalous coefficients

® These functions are mock modular of depth n — 1 and their
completion is given by:

k
g{pz} — Sym{ Z R{S"}(Tz) Hg(pj;+17---apj[+1)(7-)}’
2 ni=n i=1

which is illustrated by a sum over the trees:

F’(m)

® The main blocks, R{”}(Tg), are non-holomorphic theta series.

R(SL; r-‘:m)

= +1

1

o

L
1.02)

M1
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The modular ambiguity
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Theta series

e A simple theta series can be written as

- 3 g

keN-p

where A is a d-dimensional lattice with negative definite
quadratic form Q(x) that verifies Q(x) € 2Z. It gives a
vector-valued modular form with the dimension of the
representation being equal to |det Q|.
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The modular ambiguity
[e]e]e]e]e] le]elele)

Theta series

e A simple theta series can be written as

- 3 g

keN-p

where A is a d-dimensional lattice with negative definite
quadratic form Q(x) that verifies Q(x) € 2Z. It gives a
vector-valued modular form with the dimension of the
representation being equal to |det Q|.

e If Q(x) is indefinite, we can still define a theta series by
inserting a kernel ®(1/27, k) that has support inside the
negative cone of the quadratic form.

Khalil Bendriss Laboratoire Charles Coulomb
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The modular ambiguity
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Theta series

® A theta series with a kernel can be written as

Iu= Y O(2n k)q 2 QK)?,

keNu
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The modular ambiguity
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Theta series

® A theta series with a kernel can be written as

Iu= Y O(2n k)q 2 QK)?,

keNu

® A theta series is modular if its kernel verifies a certain
differential equation called Vignéras equation.
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The modular ambiguity
0000008000

Theta series

® A theta series with a kernel can be written as

Oy = Z (\/%k) 2 QY

keNu

® A theta series is modular if its kernel verifies a certain
differential equation called Vignéras equation.

® There are 2 possibilities, either we take a (product of)
difference of sign functions which preserves holomorphicity but
spoils modularity, or we take the kernel as (product of)
difference of generalized error functions which ensures
modularity but spoils holomorphicity.
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The modular ambiguity
0000000800

Solving the completion equation

® |et's look at the equation at n =2

g (1. 7) = gl (D) + RELL (72)

R®yP2) = 1 R(mgz)

pit+p S{ = Py N =p,

9 ° ! \
b gPr) | g =1 { gtpz) -1

p p: D1 P2
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The modular ambiguity
0000000080

Solving the completion equation

® Let's look at the equation at n =2

g (r.7) = gl (D) + R (72)

® The functions Rl{tp&}(rg) are theta series whose kernel doesn’t

satisfy the Vignéras equation.

Khalil Bendriss Laboratoire Charles Coulomb

Mock modularity of CY threefolds 27 / 38



The modular ambiguity
0000000080

Solving the completion equation

® Let's look at the equation at n =2

g (r.7) = gl (D) + R (72)

e The functions R;{LPHL-}(W) are theta series whose kernel doesn't
satisfy the Vignéras equation.

® This suggests we should choose g,S”,il”,il (1) as a theta series

such that the sum of its kernel with that of Rfﬂi_}(n) is a

solution of the Vignéras equation.
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The modular ambiguity
0000000080

Solving the completion equation

® Let's look at the equation at n =2

g (r.7) = gl (D) + R (72)

® The functions R,{pf{i }( 7,) are theta series whose kernel doesn’t
satisfy the Vignéras equation.

® This suggests we should choose g,S”,i;”,il( ) as a theta series

such that the sum of its kernel with that of Rfﬂii}(n) is a
solution of the Vignéras equation.

® The kernel that accomplishes this, while ensuring
holomorphicity, is constructed using sign functions:
(sgn(v - k) — sgn(w - k)) where w € A and is null (i.e

— H 1 {pl}
Q(w) =0) and v is fixed by R }( 7).
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The modular ambiguity
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Solving the completion equation

e Qur lattice is of definite signature and doesn’t contain null
vectors = we need to extend the lattice.
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The modular ambiguity
000000000 e

Solving the completion equation

e Qur lattice is of definite signature and doesn’t contain null
vectors = we need to extend the lattice.

® There is another step that we need to do before writing the
solution: adding a refinement parameter [S. Alexandrov, J.
Manschot, B. Pioline '20].
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@ Constructing the solution
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Constructing the solution
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The refinement

® First, we introduce a refinement parameter z = o — 70
parametrized by two real variables.
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Constructing the solution
0@000000

The refinement

® First, we introduce a refinement parameter z = o — 70
parametrized by two real variables.
e Why the refinement ?

® The refined function Rl{f’ﬁ;e}f(n,z) becomes much simpler.
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Constructing the solution
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The refinement

® First, we introduce a refinement parameter z = o — 70

parametrized by two real variables.
e Why the refinement ?
® The refined function R{p’}re (72, z) becomes much simpler.

o { i}
® The real parameter 8 W|II serve as a crucial regularization

parameter in our solution later.
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Constructing the solution
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The refinement

® First, we introduce a refinement parameter z = o — 70
parametrized by two real variables.
e Why the refinement ?
® The refined function R{p’}re (72, z) becomes much simpler.

o { i}
® The real parameter 8 W|II serve as a crucial regularization

parameter in our solution later.
e Physically the quantity y = ™% can be thought of as a
fugacity parameter conjugate to the angular momentum J; in
uncompactified dimensions.
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Constructing the solution
0@000000

The refinement

® First, we introduce a refinement parameter z = o — 70
parametrized by two real variables.
e Why the refinement ?
® The refined function R/{fﬁﬁf(rz,z) becomes much simpler.
® The real parameter 5 will serve as a crucial regularization
parameter in our solution later.
e Physically the quantity y = ™% can be thought of as a
fugacity parameter conjugate to the angular momentum J; in
uncompactified dimensions.

: - £
® The refined anomalous coefficients g,Sf’,i;’?ﬁlre (7,z) are mock

Jacobi-like forms and their completion is given by a refined
version of the completion equation.
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Constructing the solution
0@000000

The refinement

® First, we introduce a refinement parameter z = o — 70
parametrized by two real variables.
e Why the refinement ?
® The refined function Rl{lp{ire}f

® The real parameter 5 will serve as a crucial regularization
parameter in our solution later.

(72, z) becomes much simpler.

e Physically the quantity y = ™% can be thought of as a
fugacity parameter conjugate to the angular momentum J; in
uncompactified dimensions.

: - £
® The refined anomalous coefficients g,Sf’,i;’?ﬁlre (7,z) are mock

Jacobi-like forms and their completion is given by a refined
version of the completion equation.

e \We recover the original functions when z — 0.
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Constructing the solution
00®e00000

Lattice extension

® For each charge p; we introduce d; new direction and a new
refinement parameter z;.
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Lattice extension

® For each charge p; we introduce d; new direction and a new

refinement parameter z;.
® \We get a similar completion equation on new function
g/f’}"i?}‘?f(r, z,{z;}) only with a bigger lattice A that contains

null vectors.
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Constructing the solution
00®e00000

Lattice extension

® For each charge p; we introduce d; new direction and a new
refinement parameter z;.

® \We get a similar completion equation on new function
g{”"}ref(r, z,{z;}) only with a bigger lattice A that contains

o i}
null vectors.

e A solution to this new equation descends to a solution of the
refined equation through

g (7 HD g (.2 A=) ,

p it Eudiy
{Z,'—>0}

where Dﬁf"") are modular derivatives acting on the extra
refinements parameters z; introduced with the extension.
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Constructing the solution
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The solution for n =2

® For the n = 2 case we examined earlier, a solution reads:

s(p1.p2)ref _ 9(p1,p2) p1,p2)
g;t 1,102 19# 1,42 + ¢M H1,p27

where ¥ is an idefinite theta series with lfernel
(sgn(v - k) —sgn(w - k+ B)) with w € A,
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The solution for n =2

® For the n = 2 case we examined earlier, a solution reads:

s(p1.p2)ref _ 9(p1,p2) p1,p2)
g;t 1,102 19# 1,42 + ¢M H1,p27

where ¥ is an idefinite theta series with kernel
(sgn(v - k) —sgn(w - k+ B)) with w € A,

® The presence of 3 in the sign regularizes the sum over the
direction satisfying w - k = 0 and produces a pole in z.
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Constructing the solution
000@0000

The solution for n =2

® For the n = 2 case we examined earlier, a solution reads:

s(p1.p2)ref _ 9(p1,p2) p1,p2)
g;t 1,102 19# 1,42 + ¢M H1,p27

where ¥ is an idefinite theta series with kernel
(sgn(v - k) —sgn(w - k+ B)) with w € A,

® The presence of 3 in the sign regularizes the sum over the
direction satisfying w - k = 0 and produces a pole in z.

® The second function ¢ is a holomorphic modular ambiguity
that cancels the pole in z and ensures a regular limit z — 0.
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Constructing the solution
[e]e]e]e] lelele]

The solution for any n

e \We provide a solution to the refined extended completion
equation in the form

~{pitref {si} . {%k}
Euiwy = Sym{ Z 19#7{”/} ¢Vk7{ﬂj}jk<j§jk+1 }’
Zn[:n k=1
which mimics the form of the completion equation verified by
...{p,-}ref
Sy -
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Constructing the solution
[e]e]e]e] lelele]

The solution for any n

e \We provide a solution to the refined extended completion
equation in the form

~{pitref {si} . {%k}
1} _Sym{ > ! ¢Vkv{ﬂf}fk<féfk+1}’

Zn[:n k=1
which mimics the form of the completion equation verified by
...{p,-}ref
i fui} -

® There are two parts to this solution, the indefinite theta series

19;3’7’&[} and the Jacobi-like forms ¢/{f‘£ii}
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Constructing the solution
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The indefinite theta series

e Fach 19;5"&_} is an indefinite theta series with the kernel

[Ty (sgn(vi - k) — sgn(wi - k + B)))
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Constructing the solution
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The indefinite theta series

e Fach 19;5"&,} is an indefinite theta series with the kernel

[T7-, (sgn(vi - k) — sgn(w; - k + B)))
e The vectors v; are fixed by R{P1f and the vectors w; are null
vectors from the extended lattice.
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Constructing the solution
00000@00

The indefinite theta series

e Fach 19;5"&,} is an indefinite theta series with the kernel

[17=; (sgn(vi - k) — sgn(w; - k + B)))

e The vectors v; are fixed by R{P1f and the vectors w; are null
vectors from the extended lattice.

® The presence of 3 in the sign functions regularizes the sum
over directions w; - k = 0. These regularized directions
produce poles in z = 0.
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Constructing the solution
[o]e]e]e]e]e] Je]

The modular forms

e The functions ¢ip&i} are Jacobi-like forms with fixed modular
properties.
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Constructing the solution
[o]e]e]e]e]e] Je]

The modular forms

e The functions ¢ip&i} are Jacobi-like forms with fixed modular
properties.

e They also ensure that the solution g"°f{Pi} has a regular
unrefined limit z — 0.
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Constructing the solution
[o]e]e]e]e]e] Je]

The modular forms

e The functions ¢ip&i} are Jacobi-like forms with fixed modular
properties.

e They also ensure that the solution g"°f{Pi} has a regular
unrefined limit z — 0.

® They can be chosen

{pi} (kpo)
Sty (7:2) 0 p=Xpi gn=l

where m is the index of the full function and E(7) is the
(second) Eisenstein series.
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Constructing the solution
0000000e

Results

® This recipe allows to find an explicit expression for the
anomalous coefficients g{p’}

M {u‘}(T) for any number of charges
P15 Pn-
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Results

® This recipe allows to find an explicit expression for the
- {pi}
anomalous coefficients o)
P15 Pn-
® The anomalous coefficients were found explicitly, in full
generality for 2 and 3 charges.

(1) for any number of charges
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Constructing the solution
0000000e

Results

® This recipe allows to find an explicit expression for the
anomalous coefficients gif["ii}(T) for any number of charges
PLs-- -, Pn-

® The anomalous coefficients were found explicitly, in full
generality for 2 and 3 charges.

e \We tested our solutions against known solutions for charges
(1,1,1) and a few examples with two charges (ri, r2).
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Results

Khalil Bendriss

Constructing the solution
0000000e

This recipe allows to find an explicit expression for the
- {pi}

anomalous coefficients o)

P15 Pn-

The anomalous coefficients were found explicitly, in full

generality for 2 and 3 charges.

(1) for any number of charges

We tested our solutions against known solutions for charges

(1,1,1) and a few examples with two charges (ri, r2).
In principle we can go to higher number of charges and thus
find a particular solution h,(,a") up to fixing all modular

ambiguities h,(,?) for p; < p.
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@® Conclusions
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Conclusions

oe

® \We parametrized the dependence of hj,, on h,g??u with p; < p
through g;E,?{i;}u}'

7 hy,(t)  Compute few
Ansatz \ DT invariants

g@1-Pn)(7)
[ ~ i
g@1-Pn)(T, 2) .

~ .
10dula

G-l (1,2, {z;})

® This opens up various development directions:

® Compute polar terms to fix the h,(,?L. (Done for p = 2 for two

CY [S.Alexandrov, S.Feyzbakhsh, A.Klemm '23])
® Generalize the construction for by > 1.
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A. Comparing solutions

® If we have two solutions gﬁ?ﬁ;’fﬁl and gfﬁ,ﬂfi}z then the

combination

SD(P17P2)(7-’ Z) — Z (g(Pth)ref o g(p1,p2)ref) ﬂ(pl,pg)

o[22 5 42 P11 52 AN
Pt

is a Jacobi form with known weight and index.

® One can decompose it in a basis of the space of Jacobi forms
of that given weight and index.
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A. Explicit solution

The solution we find for charges (1,1) reads:

an 7 7573 11993q 61471872
80 T 497664q 82044 3456 15552
| 417892013 _ 2669990303q° @)
20736 4608
a1 247 2441q3%/* 685847 q"/*
& T oo08ql/4 T 2502 6912
| 60354863¢™1/*  1794183169¢'* (q19/4)
7776 6912
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B. Eisenstein series

The expression of Ex(7) is
o0
Ear) =1-24 o1(n)a",
n=1

where o1(n) = 3_,, d. It transforms as

E» (aﬁLb) = (cr + d)? <E2(T)+_6 < )

ct+d imer+d
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