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Motivation

Large complicated systems can exhibit universal behavior

Fundamental results in probability such as the law of large
numbers and the central limit theorem

Classical thermodynamics

Statistics of energy level gaps of heavy nuclei (and chaotic
systems) can be described by a random Hamiltonian matrix

Wigner; Dyson 1950s
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With the advent of quantum mechanics and quantum field
theory we can look at more microscopic examples.

Fermions hopping on a graph:

H =
N∑

i ,j=1

Jijψiψj

In the limit of large N many physical quantities have small
fluctuations: enough to consider one sample of Jij
(self-averaging)

Let us consider interacting fermions:

HSYK =
N∑

i ,j ,k,l=1

Jijklψiψjψkψl
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A lot of results in the past 9 years from diverse research communities



Plan

Overview of SYK: large N limit and reparametrizations at
finite temperature

Applications: black holes and wormholes in anti-de Sitter

WIP: From SYK to higher-dimensional de Sitter

AM–Narovlansky–Verlinde–Xu



SYK model

N Majorana fermions ψi , i = 1, . . . ,N:

{ψi , ψj} = δij → 2N/2 × 2N/2 matrices

LSYK =
1

2
ψi∂τψi︸ ︷︷ ︸
G−1
0

−
N∑

ijkl=1

Jijklψiψjψkψl , ⟨J2ijkl⟩ =
6J2

N3
− Gaussian

All-to-all interaction: no “space” only time
Large N Schwinger–Dyson equations for 2-point function
G = ⟨ψi (τ)ψi (0)⟩:

Sachdev–Ye’1993 (complex fermions)

(−iωn − Σ(ωn))G (ωn) = 1

Σ(τ) = J2G (τ)3

(Euclidean version)
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Is disorder really necessary?

No: there are tensor models with the same large N limit:

Gurau’2013

HCTKT = J
N∑

abc,a′b′c ′=1

ψabcψa′b′cψab′c ′ψa′bc′

Carroza–Tanasa’2015;Klebanov–Tarnopolsky’2016

Possible to match even some finite N effects

Klebanov–AM–Popov–Tarnopolsky’2018

Price: huge O(N)3 symmetry. Leads to interesting quantum-error
correction effects in the singlet subspace (non-abelian stabilizer
code)

AM’2020
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Low temperature

At low temperatures one can neglect the kinetic term:

���∂τG − J2
∫

dτ ′[G 3](τ − τ ′) · G (τ ′) = δ(τ)

Finite-temperature solution:

G ∝ sgn(τ)√
Jβ sin

(
π|τ |
β

)

The smallness of kinetic term leads to emergent reparametrization
symmetry:

G (τ1, τ2) →
(
f (τ1)

′f (τ2)
′)1/4 G (f (τ1), f (τ2))

For thermodynamics and higher-point functions this is too crude.
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Low-energy effective action

Reparametrization symmetry is explicitly broken by the kinetic
term.

Effective action for the reparametrization soft-mode?

S(f (τ)) = −NαS

J

∫
dτ

(
f ′′′

f ′
− 3

2

(
f ′′

f ′

)2
)

︸ ︷︷ ︸
Schwarzian

Kitaev’2015; Maldacena–Stanford’2016

More generally, for coupled SYK models one has non-local action:

Maldacena–Stanford–Yang’2016

AM’2021

S(f (τ)) = −Nαh

J

∫
dτ1dτ2

(
f ′(τ1)f

′(τ2)

(f (τ1)− f (τ2))2

)h

These actions describe the interesting physics: thermodynamics,
transport, higher-point correlation functions
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Application: Black holes and wormholes



SYK at finite temperature is like a black hole

Reparametrizations suggest gravitational interpretation.

Conformal symmetry of AdS2 (Poincare disk)

Zero-temperature entropy S0 ≈ 0.23N (like a charged black
hole)

Maximally chaotic, as measured by the out-of-time ordered
correlator (OTOC): λL = 2π

β

⟨{ψi (t), ψj(0)}2⟩ =
c

N
eλLt +O

(
1

N2

)
Kitaev’2015

(butterfly effect)
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Schwarzian action does in fact govern Jackiw–Teitelboim (JT)
gravity in AdS2 (Poincare disk)

Maldacena–Stanford–Yang’2016

SJT =
ϕ0
2

(∫
R + 2

∫
∂
K

)
︸ ︷︷ ︸

topological

+
1

2


∫
ϕ(R + 2)︸ ︷︷ ︸

sets R=−2

+2ϕb

∫
∂
K︸ ︷︷ ︸

Sch origin



f (τ) determines the boundary shape

JT gravity arises as a certain limit of 4d Einstein gravity.
Lessons about gravity around us:

Iliesiu, Turiaci

SYK provides a UV-completion for a gravitational theory!!
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How about wormholes?



Figure: Drawing of a wormhole by John Wheeler, circa 1960s

For realistic traversable wormhole solution in 4d Einstein gravity:

Maldacena–AM–Popov’2018



Wormholes in SYK?

There are indeed wormhole solutions:

H = HSYK,L + HSYK,R + iµ
∑
k

ψk
Lψ

k
R

Maldacena–Qi’2018

µ mimics the exchange of quanta between the black holes



Wormhole formation

Can we form a wormhole dynamically? It is not a smooth
process

to answer this questions we need a UV completion

Cannot answer in Einstein gravity.

Decay rate estimation: Bintanja–Freivogel–Rolph’2023

Can answer in SYK!
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Equilibrium thermodynamics: black hole and wormhole
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Forming a wormhole dynamically by cooling down black holes

Maldacena–AM’2019
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Holographic principle and our Universe



Gravitational theories are dual to quantum mechanical systems
living on their boundary

’t Hooft; Thorn; Susskind’1993



One concrete example: AdS/CFT

Maldacena’1997
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Our Universe is close to being de Sitter.



Holography for de Sitter

There have been countless attempts to formulate holography
for de Sitter space

In case of SYK, the relation to anti-de Sitter is not
immediately obvious from the Hamiltonian

One has to compute 2-point function and notice it matches
anti-de Sitter answer

Can we reproduce de Sitter matter 2-point function from
SYK?
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Enter Narovlansky–Verlinde model

Take two non-interacting SYK models

H = HSYK,L + HSYK,R

NB: they will remain non-interacting!

However, impose equal energy constraint

HSYK,L − HSYK,R = 0

as a gauge constraint

Because of that, choose your physical operators carefully:

O∆L,∆R
phys (t) =

∫ +∞

−∞
dt ′ O∆L

L (t − t ′)O∆R
R (t ′)
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This reproduces correlation functions in de Sitter

O∆L,∆R
phys (t) =

∫ +∞

−∞
dt ′ O∆L

L (t − t ′)O∆R
R (t ′)

∆L = ∆,∆R = 1−∆:

⟨Ophys(t1)Ophys(t2)⟩ = N3GdS3( t1 − t2︸ ︷︷ ︸
geodesic distance

)

Narovlansky–Verlinde’2023

∆L = ∆,∆R = (d − 1)/2−∆:

⟨Ophys(t1)Ophys(t2)⟩ = NdGdSd(t1 − t2)

AM–Narovlansky–Verlinde–Xu’wip
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A bizarre dictionary

SYK at low temperature ↔ dS Hartle–Hawking state (rescale
time by β/π)

For scalar fields: ∆SYK = h/2, h(d − 1− h) = m2
dS

As usual, GN ∼ 1/N.

Higher-point functions are to be matched. . . As well as
deforming away from the Hartle–Hawking state



In closing: food for thought

A lot of physical systems, including some black holes,
equilibrate diffusively. E.g. black hole in anti-de Sitter has
quasi-normal frequencies:

Policastro–Son–Starinets’2001

ω = −ip2D → ∂tρ = D∆ρ

(p - momentum along the horizon)

For de Sitter:
ω = −iℓ

(ℓ is the angular momentum)
Leading to superdiffusion:

∂tρ ≈ −
√
−∆ρ

AM–Xu’2024

An exotic phenomena in the realm of quantum many-body
physics!
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Open questions for SYK

Experimental realisation?
Graphene flake: Anderson et al’2024
Google Sycamore: Jafferis et al’2022

Extend dS/SYK correspondence to higher-point functions

AM–Narovlansky–Verlinde–Xu’wip

The limit of low temperatures and large N leads to pure (no
matter) Jackiw–Teitelboim (JT) gravity. Pure JT is exactly
soluble.

Saad–Shenker–Stanford’2019

However JT gravity with matter is ill-defined even for
simpliest geometries (e.g. cylinder). SYK is supposed to be
dual to JT with matter. What can SYK say about it?
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Thank you!



A bit about strange metals



Strange metals

1980s: discovery of high-temperature cuprate superconductors

Above the superconducting phase, the electrical resistivity is
linear in the temperature.

Other powers has been observed 1/σelect ∼ Tα, α ∈ [1/2, 2].
For comparison, for Fermi liquids the restivity 1/σelect ∼ T 2

Absence of quasiparticles, like SYK
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Strange metals

In SYK Green function has no poles, only a branch-cut - non-Fermi
liquid behavior:

G ∝ sgn(τ)√
Jβ sin

(
π|τ |
β

)

One can combine SYK-dots to form a 1d or 2d array. Possible to
obtain linear in temperature electric resistivity

Song–Jian–Balents’2017

1/σelect ∝ T/N

In principle, more general coupling can lead to other temperature
powers:

AM’wip

1/σelect ∝ Tα/N

and arbitrary large ratio between heat- and electric conductivities
(Lorentz ratio):

σheat
σelect

∝ 1

T p
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